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Abstract

Motivation: Choosing a model of sequence evolution is a crucial step when using

DNA sequence data to reconstruct phylogenies: using a mismatched model will re-

duce accuracy and may lead to erroneous conclusions. FINDMODEL is a web-based

tool for selecting a model of DNA (nucleotide) evolution; it is designed to be easy to

use by researchers who do some sequencing and may not have access to phylogenetic

packages.

Approach: FINDMODEL can analyze 28 models or a restricted subset of 12 mod-

els. It creates a guide tree using Weighbor, optimizes branch lengths, calculates

the likelihood for every chosen model (using baseml from the PAML package), and

computes the Akaike information criterion (AIC). The model with the smallest AIC

score is considered to be the best-fit model. Because of server limitations, the FIND-

MODEL web server processes inputs above a certain size in non-interactive mode,
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sending an email to the user when it has completed the analysis with user’s data and

providing a down-loadable file with the results.

Results: To test the performance of FINDMODEL, we generated simulated DNA

sequences with Seq-Gen under four different models of nucleotide substitution of dif-

ferent complexity and compared the inferred model with the true model. We used

17 different configurations, with 5 instances for each set of parameter values. FIND-

MODEL returned the correct model for 73% of our test instances, and for another

9% returned the correct model, but with variable site-specific rates instead of homo-

geneous rates. Moreover, on all tests where FINDMODEL did not return the correct

model, the normalized AIC error between the correct and the predicted models was

below 0.002 (and the actual AIC difference was below 7).
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Chapter 1

Introduction

1.1 Overview

Phylogenetics is the study of the reconstruction of the evolutionary history of genes

and organisms by a combination of molecular biology and statistical techniques [24].

It has become nearly ubiquitous in biological and biomedical research as well as an

important area of research in computer science. Phylogenetic analysis of DNA se-

quences is a fundamental tool in the study of the evolutionary history of organisms,

from bacteria to humans [14, 15, 26, 28, 40]. Molecular data, especially DNA se-

quence data, are much more powerful for evolutinary studies than data from some

traditional means of evolutionary inquiry such as morphology and physiology for

several reasons. First, DNA sequences often evolve in a more regular manner. Sec-

ond, molecular data are more amenable to quantitative treatments and therefore can

be used with sophisticated mathematical and statistical methods. Third, molecular

data are much more abundant [10, 11, 24, 29].

The task of molecular phylogenetics is to convert information in sequences into

an evolutionary tree for those sequences [29]. A great number of tree construction
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Chapter 1. Introduction

methods have been proposed, since no single method performs well in all situations.

The most popular methods can be classified into three types: distance matrix meth-

ods, maximum parsimony methods, and maximum likelihood methods. In distance

matrix methods, the evolutionary distances, which are the numbers of nucleotide

substitutions between all members of a set of sequences, are computed, then a phylo-

genetic tree is constructed. Maximum parsimony methods reconstruct the evolution

of a site on a tree that requires the fewest evolutionary changes. Maximum likelihood

methods choose the tree (or trees) that of all trees is the one that is most likely to

have produced the observed data.

Models of sequence evolution, which make assumptions about the process of nu-

cleotide substitution, play an important role when using DNA sequences to estimate

phylogenetic relationships among organisms [20, 25, 31, 32]. Models will be explained

in more detail in the next section. Different data sets are often best explained

by different models—no single model fits every data set. The use of inappropri-

ate models of phylogenetic analysis may result in less accurate or even erroneous

conclusions, since the estimates of branch lengths and topology can be severely af-

fected [4, 7, 17, 23, 37, 38]. Model selection is not only important in phylogenetic

analysis, but also for estimating substitution parameters or for hypothesis testing

[1, 31, 41, 43, 46, 47]. Yet models are often used blindly in analysis [31]: a specific

model is often used either because it has been used by other authors or because it is

the default option in the analysis package.

The best-fit model for a particular data set can be selected through statistical

testing. Model selection aims to find the model that most accurately estimates the

unknown model of molecular evolution, while avoiding bias and excessive variance

[25]. Study results suggest that model selection is reasonably accurate [32].

The software ModelTest [30], written specifically for testing whether the chosen

model is appropriate, can also be used for model selection. However, ModelTest

2



Chapter 1. Introduction

requires access to PAUP* [39], which, while a standard package for phylogenetic

analysis, does not run under Windows and is aimed at expert users. In response to

the need for a user-friendly tool aimed specifically at model selection, we developed

FINDMODEL. FINDMODEL is web-based and thus accessible from any platform;

it includes 28 different models of nucleotide evolution.

The functionality of FINDMODEL, and the methods and phylogenetic packages

used by it are described in chapter 2. In chapter 3, we explain the experimental setup

for testing its performance. Chapter 4 discusses the experimental results. Chapter

5 discusses the alternative methods for model selection and future work.

1.2 Models of DNA evolution

The change in nucleotides with time is essential for understanding the evolution of

DNA sequences and is used both in estimating the rate of evolution and in recon-

structing the evolutionary history of organisms [10, 11, 24, 29]. Many models have

been proposed for studying this process. We explain here in some detail the models

we used to test the performance of FINDMODEL. More details about these models

and about many other models can be found in the referred books and articles.

1.2.1 Jukes-Cantor’s one-parameter model

The model of Jukes and Cantor is the simplest model of DNA sequence evolution

[16]. The substitution scheme it uses is shown in Figure 1.1. This model assumes

equal chance of changing for each base in the sequence and no bias in the direction

of change. This results in an equal frequency of the four bases at equilibrium. In this

model, the rate of substitution for each nucleotide is 3α per unit time, and the rate

of substitution in each of the three possible directions of change is α. This model is

3



Chapter 1. Introduction

Figure 1.1: One-parameter model of nucleotide substitution. In this model, the rate
of substitution in each direction is α. From [11].

also called the one-parameter-model, since it involves only one parameter.

1.2.2 Kimura’s two-parameter model

In most cases, nucleotide substitutions do not always occur randomly, as assumed in

the Jukes and Cantor model. Kimura introduced a two-parameter model that allows

a transition/transversion inequality of rate [18]. The substitution scheme is shown

in Figure 1.2. In this scheme, the rate of transitional substitution at each nucleotide

site is α per unit time, whereas the rate of each of the two types of transversional

substitution is β per unit time. The ratio of transitions to transversions will be

α/(2β). The total rate of change will be α+2β. This model is symmetrical, so the

equilibrium frequencies of all four bases under it are also equal.
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Chapter 1. Introduction

Figure 1.2: Two-parameter model of nucleotide substitution. In this model, the rate
of transition (α) may not be equal to the rate of each of the two types of transversion
(β). From [11].

1.2.3 HKY model

The Kimura two-parameter model and the Jukes-Cantor one-parameter model both

assume that all four bases have equal expected frequencies. The HKY model, which

relaxes this assumption, was introduced by Hasegawa, Kishino, and Yano [13]. It

extends the Kimura two-parameter model to asymmetric base frequencies and has

five parameters.

1.2.4 The general time-reversible model

All the models mentioned above are reversible. When the equilibrium frequencies of

the bases are πA, πC , πG, and πT , a model is reversible if

πi Prob(j | i, t) = πj Prob(i | j, t) (1.1)

5



Chapter 1. Introduction

Table 1.1: The general time-reversible model of DNA evolution [10]

To: A G C T
From:

A - πGα πCβ πT γ
G πAα - πCδ πT ε
C πAβ πGδ - πT η
T πAγ πGε πCη -

In this case, if base i is at one end of a branch, and base j is at the other end, there

is no way to decide which end was the ancestor and which the descendant, because

the probability of starting with i at one end, and ending with j at the other, is the

same as the probability of starting with j and evolving to i. Reversibility is the basic

reason why we usually are not able to place the root of a tree. The instantaneous

rates of change for this model for DNA are shown in Table 1.1 [22]. The πi are the

equilibrium frequencies of the bases, so the total rate of change will be the sum of

the off-diagonal elements of the table, each multiplied by the probability that one

would start with that base.
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Chapter 2

Approach

FINDMODEL analyzes the input alignment to decide which of a predefined col-

lection of models of character evolution best describes the input data, using an

idea first implemented in ModelTest [30]. It is one of the applications of the Los

Alamos hepatitis C sequence database (HCV database) [21] and is available at

hcv.lanl.gov/content/hcv-db/find model/findmodel.html. Its homepage and

result page are shown in Figure 2.1 and Figure 2.2.

2.1 Process

The input sequences are converted into FASTA format using fmtseq (see Tools, be-

low). If the format of the input file is not recognized by fmtseq, FINDMODEL

suggests other options for converting the sequences into FASTA format. Input se-

quences are then checked to ensure that they are legal nucleotide sequences. If the

input file is above a certain size, FINDMODEL saves the input file, asks the user for

an email address and for a title for the job, and proceeds through the steps listed

below under control of a script, at the end of which it will email the results to the user.

7



Chapter 2. Approach

All columns containing gaps are removed from the input alignments. DNAdist

from the PHYLIP [9] package is used to create a distance matrix. Weighbor [5] is

then used to reconstruct a tree from that distance matrix. At that point, each of the

models in the chosen set (currently, a full set of 28 or a reduced set of 12) is evaluated

in turn. To evaluate a model, baseml from the PAML package is used to optimize the

branch lengths of the tree (the most expensive part of the computation), then the

Akaike information criterion (AIC) [2] is calculated. The model with smallest AIC

score is considered to be the best-fit model [30]. The program provides the user with

the likelihood and AIC score for each model considered, plus the model selected and

the values of its parameters.

2.2 Tools

2.2.1 fmtseq

fmtseq (available at bioweb.pasteur.fr/docs/seqio/fmtseq doc.html) is a reim-

plementation and extension of Gilbert’s readseq program whose main function

is to convert biological sequence files from one format to another. It recognizes

formats Plain, EMBL, Swiss-Prot (sprot), GenBank (gb), PIR (codata), ASN.1

(asn), FASTA (Pearson), FASTA-old, FASTA-output (fout), BLAST-output (bout),

NBRF, NBRF-old, IG/Stanford (ig), IG-old, GCG, MSF (gcg-msf), PHYLIP, PH-

YLIP-Int (phylipi), PHYLIP-Seq (phylips), Clustalw (clustal), and Pretty.

2.2.2 gapstrip

gapstrip (available at hcv.lanl.gov/content/hcv-db/GAPSTRIP/gapstrip.html

), a locally developed script, removes any column in the alignment that contains one
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Chapter 2. Approach

or more gap characters and thus also reduces all sequences to the same length—that

of the shortest sequence.

2.2.3 PHYLIP

PHYLIP (available at evolution.genetics.washington.edu/phylip.html) is a

widely distributed phylogeny package written by J. Felsenstein. dnadist is one of

the many programs available in PHYLIP; it uses nucleotide sequences to compute a

distance matrix under one of four different models of nucleotide substitution. The

default model is F84 [19] and is used to run dnadist in FINDMODEL. The pairwise

distance for each pair of sequences is a maximum likelihood estimate of the diver-

gence time (total branch length) between the two sequences. We chose to use dnadist

because it is widely available, very well tested, and works well with Weighbor.

2.2.4 Weighbor

Weighbor (available at www.t10.lanl.gov/billb/weighbor) is a distance-based

phylogeny reconstruction method. In effect, it is a weighted version of neighbor-

joining [36] that gives significantly less weight to the longer distances in the distance

matrix. The weights are based on variances and covariances expected in a simple

Jukes-Cantor model. Weighbor is used in FINDMODEL because it is much faster

than maximum likelihood, usually faster than maximum parsimony, and less sensitive

than neighbor-joining to the presence of distant taxa.

2.2.5 PAML (and baseml)

PAML (available at abacus.gene.ucl.ac.uk/software/paml.html) is a package for

phylogenetic analysis of DNA or protein sequences by maximum likelihood. baseml

9



Chapter 2. Approach

carries out a maximum-likelihood analysis of nucleotide sequence evolution. The

process of substitution is assumed to be stationary and Markov process models are

used to describe substitutions between nucleotides. A discrete gamma model [45] is

used to accommodate rate variation among sites. baseml can estimate tree topology,

branch lengths, and substitution parameters, with a multitude of options, but it does

not support invariant sites, in part because the estimate of the fraction of invariant

sites tends to be very sensitive to the number of taxa. Since FINDMODEL uses

baseml, it does not support invariant sites either—whereas ModelTest does, because

PAUP*, its phylogenetic reconstruction tool, can include an estimate of the number

of invariant sites.

2.2.6 AIC

The Akaike information criterion is a measure of fit where the best fitting model is

the one with the smallest AIC value. It is defined as

AIC = −2 ln L + 2N (2.1)

where L is the maximum likelihood for a specific model using N independently ad-

justed parameters within the model [2, 30]. AIC rewards models for good fit, but

imposes a penalty for extra parameters, so fitting an excessively complex model is

not likely [3, 12]. AIC allows for model selection uncertainty and model averaging

and offers various other advantages over likelihood ratio tests [6].

2.3 Some other features of FINDMODEL

Finding the best evolutionary model is a computationally intensive procedure, both

in its original implementation as the Modeltest PAUP script and in the FINDMODEL

10



Chapter 2. Approach

Table 2.1: Models considered by FINDMODEL. Models in the reduced set are in
bold and with reference.

Key Model # params Ref.
JC Jukes-Cantor 0 [16]
F81 Felsenstein 81 3 [8]
K2P Kimura 2-parameter 1 [18]
HKY Hasegawa-Kishino-Yano 4 [13]
TrNeq Tamura-Nei equal-freq 2
TrN Tamura-Nei 5 [42]
K81 Kimura 3-parameter 2

K81ne Kimura 3p unequal-freq 5
TIMeq Transition equal-freq 3
TIM Transition 6

TVMeq Transversion equal-freq 4
TVM Transversion 7
SYM Symmetrical 5
GTR General Time-reversible 8 [34]

implementation.

• FINDMODEL can find the best-fit model among twenty-eight models—see Ta-

ble 2.1 (note that a Γ deviation can be added to every model). However, in

order to reduce the computational burden on the server, a default run uses a

reduced set of twelve models (models in bold font in Table 2.1 and those models

with Γ); the full set of models can be run as an option.

• Our running-time tests have been conducted on sequences of around 10,000

nucleotides. These tests show that, on the current server, FINDMODEL takes

24h to run for the full set of models on an input file of about 355kB or for

the reduced set of models on an input file of about 520kB. Shorter sequences

actually slow down the process as they require more iterations in the likelihood

computations. Accordingly, we set a threshold of 350kB for the full set of mod-

els and 500kB for the reduced set of models for the maximum input size. (We

are planning to release a down-loadable version that will enable users to run

11



Chapter 2. Approach

on their own machines for as long as desired.)

• Input files larger than 3kB for the full set of models or 6kB for the reduced set

of models may take over 5 minutes to complete. We used these sizes as thresh-

olds to classify jobs as interactive or batch-mode. When the file size exceeds

the threshold, the job is run in the background and the results stored for one

week on the server from where they can be retrieved at an address provided in

the email sent to the user upon completion of the analysis. A rough estimate

of the anticipated running time is given before the job runs in this case.

• When the result is showed instantly on the web, FINDMODEL shows the pa-

rameter matrix for the selected model on its result page (Figure 2.2), and the

parameter matrix for other models considered can be shown on the same page

by clicking the model name.

12



Chapter 2. Approach

Figure 2.1: The home page of FINDMODEL web site
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Figure 2.2: One of the result pages of FINDMODEL web site
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Chapter 3

Experimental Setup

To test the performance of FINDMODEL, we generated sets of simulated DNA

sequences under selected models of nucleotide substitution and compared the predic-

tions made by FINDMODEL on these sets of sequences with the actual model used

to generate them. Simulated data were generated with Seq-Gen 1.3.1 [33], which sim-

ulates the evolution of an “ancestral” sequence down the edges of a phylogenetic tree

using any one of a large variety of models of nucleotide substitution. Relative state

frequencies, transition to transversion ratio, and general reversible rate matrix may

all be specified, as well as site-specific rate heterogeneity. The tree used was generated

using Treemaker from the HCV database [21] with its sample input; this tree has 16

leaves and is relatively balanced. All tests were done with the reduced set of models.

We generated simulated DNA sequences under four different models chosen from

the reduced set of models in Table 2.1: Jukes-Cantor (JC) [16], Kimura 2-parameter

(K2P) [18], Hasegawa-Kishino-Yano (HKY) [13], and General Time-Reversible (G-

TR) [34] (see Table 3.1, Table 3.2, and Table 3.3). We chose these four models

because they all have an obvious biological interpretation and because they span

all complexity levels, from the simplest (JC) to the most complex (GTR). For each

15



Chapter 3. Experimental Setup

Table 3.1: Parameters for tests of the JC and K2P models

model test #
sequence
length

transition to
transversion

JC 1 329
2 1,000
1 329 1.0

K2P 2 329 2.0
3 1,000 2.0

model, we simulated sequences of 329 and 1000 nucleotides in order to test the sen-

sitivity of FINDMODEL to the length of the sequences. Transition-to-transversion

ratios of 1.0 and 2.0 were used for models K2P and HKY. JC is a special case of K2P

and corresponds to K2P with transition-to-transversion ratio of 0.5. The ratio 2.0

was used for more tests than 1.0, since it is closer to the real transition-to-transversion

ratio for hepatitis C sequences—our original application. Relative state frequencies,

which represents the equilibrium frequencies of the four nucleotides, were calculated

from real hepatitis C or HIV sequences.

Seq-Gen implements site-specific rate heterogeneity, under which different sites

evolve at different rates. A particularly simple way to specify such heterogeneity is

to use a gamma distribution, usually considered the most appropriate approximation

for rate differences among the variable sites [3]. A shape parameter, α, for the Γ

rate heterogeneity must be specified, with lower values denoting more variation across

sites. Typical values estimated from real data tend to be around 0.3, so we used values

of 0.1 and 0.5 in order to test the effect of large and small variations across sites.

16
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Table 3.2: Parameters for tests of the HKY model

test #
sequence
length

transition to
transversion

A,C,G,T
frequencies

discrete Γ Γ

1 329 2.0
0.23366, 0.26786
0.29369, 0.20479

2 1,000 2.0
0.23366, 0.26786
0.29369, 0.20479

3 1,000 2.0
0.19986, 0.29092
0.27624, 0.21329

4 1,000 1.2
0.34357, 0.17696
0.23013, 0.24937

5 1,000 2.0
0.19986, 0.29092
0.27624, 0.21329

5

6 1,000 2.0
0.19986, 0.29092
0.27624, 0.21329

0.1

7 1,000 2.0
0.19986, 0.29092
0.27624, 0.21329

0.5

Table 3.3: Parameters for tests of the GTR model

test #
sequence
length

discrete Γ Γ

1 329
2 1,000
3 1,000 5
4 1,000 0.1
5 1,000 0.5

C G T
A 0.839597 0.083972 0.132634
C 0.177409 0.257970
G 0.579553

17



Chapter 4

Results

4.1 Results Regarding Models

Table 4.1 summarizes the results in terms of model matches and mismatches; we

report the results separately for each of the 5 instances generated for each of the 17

distinct groups of parameters.

These results can be viewed as follows:

• JC, the most specific model, was selected in 6 out of 10 test instances for JC

(see Table 4.2 and Table 4.3); of the other four test instances, three selected a

mor general model, one selected JC+Γ.

• K2P was selected in 12 out of 15 test instances for K2P (see Table 4.4 to

Table 4.6); of the other three test instances, only one selected a more general

model (HKY+Γ), while two selected K2P+Γ.

• HKY was selected in 11 out of 20 test instances for HKY (see Table 4.7 to

Table 4.10); of the other nine test instances, one selected a more general model

(GTR), one selected a more specific model (K2P), four selected TrN (very
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Table 4.1: Test results. Empty entries indicate perfect matches; an asterisk (*)
indicates a match, but with a Γ rate parameter added; a question mark (?) denotes
a mismatch of low significance, where the AIC error rate (AIC difference between
correct model and selected model / AIC of selected model) was below 0.0005 (all
entries marked with an asterisk also met this criterion); finally, more significant
mismatches are indicated by the erroneous choice of model and, in parentheses, the
corresponding AIC error rate. (The AIC values obtained for each test are shown in
Table 4.2 to Table 4.18)

Model tested test # 1 2 3 4 5
JC 1 K2P (0.001127) * ?

2 ?
K2P 1

2 ? *
3 *

HKY 1 ? ? TrN (0.000863)
2 ? *
3 ?
4 ? * *

HKY+Γ 5 ? ?
6 ?
7 ? ?

GTR 1 *
2 *

GTR+Γ 3
4
5

similar to HKY [44]), while three selected HKY+Γ.

• HKY+Γ was selected in 10 out of 15 tests for HKY+Γ (see Table 4.11 to

Table 4.13); of the other five test instances, three selected a more general

model (GTR+Γ) and two selected TrN+Γ (very similar to HKY+Γ [44]).

• GTR was selected in 8 out of 10 test instances for GTR (see Table 4.14 and

Table 4.15), while the other two test instances selected GTR+Γ.

• GTR+Γ was selected in all 15 test instances for GTR+Γ (see Table 4.16 to

Table 4.18).

19



Chapter 4. Results

Table 4.2: AIC values of JC model test 1. In this and all the following AIC value
tables, the AIC values of selected models are in bold, and the ones of correct models
are in italic.

model run 1 run 2 run 3 run 4 run 5
JC(1) 6187.173 5613.264 6039.056 5918.637 6071.035

JC+G(3) 6189.148 5614.764 6040.734 5916.842 6072.443
F81(5) 6191.699 5617.861 6044.925 5925.017 6075.903

F81+G(7) 6193.646 5619.380 6046.506 5923.173 6077.342
K80(9) 6180.210 5615.193 6040.797 5920.491 6070.789

K80+G(11) 6182.183 5616.696 6042.466 5918.685 6072.196
HKY(13) 6184.625 5619.803 6046.708 5926.857 6075.712

HKY+G(15) 6186.568 5621.325 6048.282 5925.000 6077.144
TrN(21) 6186.620 5621.799 6047.150 5928.773 6076.631

TrN+G(23) 6188.561 5623.321 6048.746 5926.896 6078.131
GTR(53) 6191.983 5625.075 6049.560 5934.354 6082.488

GTR+G(55) 6193.943 5626.648 6051.186 5932.443 6083.962
Model selected K80 JC JC JC+G K80

Overall, among 85 test instances, 62 test instances selected the correct models and

an additional 8 selected the correct model plus Γ; in the latter case, the AIC score

Table 4.3: AIC values of JC model test 2

model run 1 run 2 run 3 run 4 run 5
JC(1) 17904.041 17928.909 17953.130 18175.153 18058.687

JC+G(3) 17905.993 17929.547 17955.133 18176.841 18060.733
F81(5) 17910.383 17931.926 17955.698 18179.151 18058.026

F81+G(7) 17912.329 17932.571 17957.699 18180.842 18060.076
K80(9) 17905.692 17930.076 17954.980 18175.214 18060.528

K80+G(11) 17907.643 17930.713 17956.983 18176.909 18062.574
HKY(13) 17912.038 17933.092 17957.507 18179.172 18059.832

HKY+G(15) 17913.983 17933.733 17959.508 18180.871 18061.881
TrN(21) 17909.502 17934.734 17959.494 18180.914 18061.394

TrN+G(23) 17911.463 17935.391 17961.495 18182.617 18063.446
GTR(53) 17914.985 17938.911 17957.487 18185.412 18063.569

GTR+G(55) 17916.949 17939.565 17959.490 18187.140 18065.620
Model selected JC JC JC JC F81
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Table 4.4: AIC values of K2P model test 1

model run 1 run 2 run 3 run 4 run 5
JC(1) 5946.753 5897.106 5731.961 5762.515 5982.065

JC+G(3) 5948.255 5899.168 5733.999 5764.532 5984.090
F81(5) 5953.307 5897.493 5736.867 5765.723 5988.037

F81+G(7) 5954.786 5899.555 5738.907 5767.739 5990.062
K80(9) 5893.216 5815.355 5659.919 5691.343 5954.134

K80+G(11) 5894.539 5817.409 5661.951 5693.354 5956.157
HKY(13) 5899.527 5818.641 5663.459 5692.457 5959.708

HKY+G(15) 5900.816 5820.696 5665.493 5694.467 5961.730
TrN(21) 5900.843 5820.220 5663.885 5692.456 5961.243

TrN+G(23) 5902.120 5822.275 5665.920 5694.468 5963.266
GTR(53) 5905.032 5819.519 5665.277 5693.984 5958.963

GTR+G(55) 5906.186 5821.572 5667.312 5695.995 5960.988
Model selected K80 K80 K80 K80 K80

of the chosen model was within 0.05% of that the correct model (a difference of

less than 3). Among the remaining 15 test instances, the second best model was

the correct one in 10 test instances and always with an AIC score within 0.12% of

Table 4.5: AIC values of K2P model test 2

model run 1 run 2 run 3 run 4 run 5
JC(1) 5978.390 5757.453 5882.386 5966.160 5722.158

JC+G(3) 5980.034 5757.668 5884.430 5966.510 5724.169
F81(5) 5983.770 5756.708 5888.410 5971.494 5728.835

F81+G(7) 5985.431 5757.028 5890.453 5971.902 5730.847
K80(9) 5741.613 5515.339 5658.399 5720.481 5487.847

K80+G(11) 5741.895 5514.191 5660.431 5719.430 5489.832
HKY(13) 5745.629 5514.161 5664.474 5726.679 5494.772

HKY+G(15) 5745.914 5513.396 5666.506 5725.970 5496.744
TrN(21) 5747.629 5516.128 5666.474 5728.355 5493.427

TrN+G(23) 5747.914 5515.378 5668.506 5727.567 5495.419
GTR(53) 5745.555 5518.917 5671.610 5725.726 5497.689

GTR+G(55) 5745.490 5518.306 5673.642 5725.266 5499.686
Model selected K80 HKY+G K80 K80+G K80
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Table 4.6: AIC values of K2P model test 3

model run 1 run 2 run 3 run 4 run 5
JC(1) 17816.704 17603.196 17796.847 18005.106 17972.443

JC+G(3) 17818.041 17605.268 17798.909 18007.208 17974.503
F81(5) 17820.103 17610.036 17794.014 18007.876 17977.693

F81+G(7) 17821.410 17612.108 17796.077 18009.976 17979.755
K80(9) 17114.467 16909.621 16983.106 17311.731 17236.817

K80+G(11) 17113.753 16911.652 16985.129 17313.790 17238. 833
HKY(13) 17117.660 16915.969 16983.673 17315.696 17241.620

HKY+G(15) 17116.814 16917.998 16985.697 17317.756 17243.637
TrN(21) 17119.628 16917.961 16985.041 17317.686 17242.945

TrN+G(23) 17118.790 16919.991 16987.065 17319.745 17244.964
GTR(53) 17124.080 16921.402 16987.403 17320.071 17244.951

GTR+G(55) 17123.361 16923.433 16989.424 17322.133 17246.970
Model selected K80+G K80 K80 K80 K80

that of the correct model (a difference of less than 7). In only one test instance did

FINDMODEL choose a model more specific than the correct model, while it chose

a more general model in 14 test instances.

Table 4.7: AIC values of HKY model test 1

model run 1 run 2 run 3 run 4 run 5
JC(1) 5957.457 5915.157 5795.688 5688.362 6250.941

JC+G(3) 5959.483 5917.007 5797.691 5689.487 6252.537
F81(5) 5961.965 5913.734 5775.481 5677.574 6241.887

F81+G(7) 5963.991 5915.641 5777.481 5678.672 6243.725
K80(9) 5741.231 5728.215 5565.495 5504.463 6004.744

K80+G(11) 5743.249 5729.683 5567.370 5504.820 6005.742
HKY(13) 5741.569 5727.019 5548.728 5500.918 5994.275

HKY+G(15) 5743.588 5728.481 5550.727 5500.637 5995.877
TrN(21) 5742.425 5725.486 5550.572 5496.175 5996.258

TrN+G(23) 5744.446 5727.039 5552.573 5496.239 5997.854
GTR(53) 5745.370 5726.442 5556.319 5500.252 6000.811

GTR+G(55) 5747.391 5727.969 5558.319 5500.218 6002.488
Model selected K80 TrN HKY TrN HKY
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Table 4.8: AIC values of HKY model test 2

model run 1 run 2 run 3 run 4 run 5
JC(1) 17121.935 17830.410 18151.487 18212.984 17790.584

JC+G(3) 17123.900 17832.463 18153.616 18214.986 17790.754
F81(5) 17085.530 17775.801 18111.336 18191.429 17761.697

F81+G(7) 17087.473 17777.864 18113.464 18193.439 17762.461
K80(9) 16549.344 17120.804 17383.076 17464.740 17037.068

K80+G(11) 16550.634 17122.807 17385.159 17466.027 17033.336
HKY(13) 16497.343 17066.590 17347.505 17421.998 16997.629

HKY+G(15) 16498.527 17068.606 17349.587 17423.570 16995.012
TrN(21) 16498.761 17067.271 17348.741 17423.998 16997.365

TrN+G(23) 16499.960 17069.289 17350.825 17425.570 16995.062
GTR(53) 16503.271 17064.358 17353.379 17429.522 17002.269

GTR+G(55) 16504.491 17066.375 17355.462 17431.074 16999.979
Model selected HKY GTR HKY HKY HKY+G

4.2 Results Regarding Lengths of Sequences

• For the JC model, JC was selected in 4 out of 5 test instances for sequences of

length of 1000 (see Table 4.3), but in 2 out of 5 test instances for sequences of

Table 4.9: AIC values of HKY model test 3

model run 1 run 2 run 3 run 4 run 5
JC(1) 17355.857 17103.030 17241.481 17510.880 17347.000

JC+G(3) 17357.953 17105.114 17243.488 17510.878 17349.111
F81(5) 17324.741 17058.837 17234.789 17479.883 17314.017

F81+G(7) 17326.843 17060.947 17236.808 17481.019 17316.148
K80(9) 16730.545 16367.574 16588.695 16860.437 16753.217

K80+G(11) 16732.600 16369.612 16590.277 16858.198 16755.291
HKY(13) 16675.588 16275.207 16555.544 16799.870 16698.583

HKY+G(15) 16677.645 16277.278 16557.284 16800.007 16700.683
TrN(21) 16677.558 16277.117 16554.535 16801.406 16700.581

TrN+G(23) 16679.615 16279.188 16556.318 16801.532 16702.681
GTR(53) 16681.913 16281.135 16558.097 16799.982 16705.895

GTR+G(55) 16683.971 16283.207 16559.872 16800.218 16707.996
Model selected HKY HKY TrN HKY HKY
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Table 4.10: AIC values of HKY model test 4

model run 1 run 2 run 3 run 4 run 5
JC(1) 17366.278 17961.585 18149.752 17335.909 17541.899

JC+G(3) 17368.135 17962.289 18149.061 17337.968 17540.799
F81(5) 17245.188 17841.448 17984.275 17150.599 17385.382

F81+G(7) 17247.146 17842.617 17984.410 17152.653 17383.373
K80(9) 17089.823 17719.663 17852.865 17060.594 17284.593

K80+G(11) 17091.306 17719.587 17850.986 17062.639 17282.422
HKY(13) 16949.074 17585.866 17699.647 16893.054 17155.608

HKY+G(15) 16950.800 17586.817 17699.443 16895.093 17154.139
TrN(21) 16949.220 17585.467 17701.065 16894.300 17156.963

TrN+G(23) 16950.878 17586.408 17700.892 16896.340 17155.353
GTR(53) 16951.331 17590.508 17706.254 16895.771 17160.032

GTR+G(55) 16952.993 17591.466 17706.108 16897.814 17158.520
Model selected HKY TrN HKY+G HKY HKY+G

length of 329 (see Table 4.2). For the test instances that did not select JC, the

AIC values of JC were closer to the AIC values of selected model for sequences

of length 1000 (see values in Table 4.1 and Table 3.1).

Table 4.11: AIC values of HKY+Γ model test 5

model run 1 run 2 run 3 run 4 run 5
JC(1) 16609.895 16638.548 16156.544 16726.336 15672.367

JC+G(3) 16331.209 16292.661 15926.510 16515.682 15423.283
F81(5) 16575.938 16610.542 16138.605 16688.679 15633.872

F81+G(7) 16297.049 16260.539 15914.561 16483.798 15379.330
K80(9) 16149.007 16130.809 15611.691 16194.630 15199.554

K80+G(11) 15846.640 15749.465 15358.825 15958.079 14924.765
HKY(13) 16086.423 16094.524 15565.960 16135.910 15130.965

HKY+G(15) 15781.990 15707.910 15322.691 15907.849 14849.688
TrN(21) 16087.985 16094.851 15564.879 16136.585 15132.614

TrN+G(23) 15783.576 15707.709 15323.168 15908.614 14850.297
GTR(53) 16093.942 16100.119 15557.626 16139.237 15135.006

GTR+G(55) 15789.414 15713.446 15318.741 15910.379 14852.300
Model selected HKY+G TrN+G GTR+G HKY+G HKY+G
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Table 4.12: AIC values of HKY+Γ model test 6

model run 1 run 2 run 3 run 4 run 5
JC(1) 10998.935 11531.007 11121.435 11527.585 11625.601

JC+G(3) 9646.508 10049.084 9909.204 10028.613 10102.357
F81(5) 10959.929 11502.727 11092.874 11499.275 11589.851

F81+G(7) 9607.761 10013.216 9883.974 9986.241 10065.136
K80(9) 10898.239 11356.353 10948.290 11412.032 11465.837

K80+G(11) 9517.631 9831.340 9704.927 9891.021 9909.537
HKY(13) 10849.764 11317.880 10905.683 11370.840 11417.543

HKY+G(15) 9470.315 9780.490 9666.172 9828.112 9861.773
TrN(21) 10851.396 11314.633 10907.665 11372.787 11418.381

TrN+G(23) 9470.750 9781.626 9668.168 9829.096 9863.769
GTR(53) 10854.643 11314.551 10906.821 11377.013 11418.092

GTR+G(55) 9474.674 9783.169 9668.063 9828.020 9868.693
Model selected HKY+G HKY+G HKY+G GTR+G HKY+G

• For the K2P model, when the transition-to-transversion ration was 2.0, K2P

was selected in 4 out of 5 test instances for sequences of length 1000 (see Ta-

ble 4.6), but in 3 out of 5 test instances for sequences of length of 329 (see

Table 4.13: AIC values of HKY+Γ model test 7

model run 1 run 2 run 3 run 4 run 5
JC(1) 15817.025 15206.093 15514.700 15259.629 15248.885

JC+G(3) 15108.967 14614.544 14856.303 14552.872 14650.124
F81(5) 15796.269 15177.213 15468.932 15237.713 15220.111

F81+G(7) 15086.428 14584.418 14820.619 14529.958 14630.665
K80(9) 15481.583 14762.347 15141.435 14944.625 14894.555

K80+G(11) 14732.193 14128.019 14439.531 14206.078 14267.123
HKY(13) 15442.492 14718.672 15060.023 14909.092 14838.147

HKY+G(15) 14686.217 14086.825 14374.292 14167.152 14221.549
TrN(21) 15442.074 14720.240 15061.784 14909.864 14840.092

TrN+G(23) 14685.134 14087.547 14376.288 14169.126 14223.267
GTR(53) 15446.048 14724.735 15061.200 14912.855 14829.838

GTR+G(55) 14690.528 14091.385 14377.594 14170.915 14215.511
Model selected TrN+G HKY+G HKY+G HKY+G GTR+G
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Table 4.14: AIC values of GTR model test 1

model run 1 run 2 run 3 run 4 run 5
JC(1) 5849.225 6082.968 5891.277 5812.723 6009.343

JC+G(3) 5847.193 6084.480 5893.273 5814.716 6011.341
F81(5) 5845.736 6079.250 5902.463 5813.331 6019.380

F81+G(7) 5843.089 6080.444 5904.465 5815.303 6021.381
K80(9) 5782.763 5999.218 5835.064 5736.894 5917.601

K80+G(11) 5780.147 6000.551 5837.030 5738.873 5919.567
HKY(13) 5779.635 5994.507 5846.416 5737.707 5926.550

HKY+G(15) 5776.525 5995.467 5848.414 5739.653 5928.545
TrN(21) 5748.425 5984.100 5802.035 5726.205 5910.186

TrN+G(23) 5747.523 5985.461 5804.057 5728.186 5912.187
GTR(53) 5562.086 5743.932 5597.629 5566.414 5741.158

GTR+G(55) 5561.026 5745.355 5599.654 5568.408 5742.976
Model selected GTR+G GTR GTR GTR GTR

Table 4.5). For the test instances that did not select K2P, the AIC values of

K2P were closer to the AIC values of selected model for sequences of length

1000 (see values in Table 4.1 and Table 3.1).

Table 4.15: AIC values of GTR model test 2

model run 1 run 2 run 3 run 4 run 5
JC(1) 17682.316 17314.484 17838.932 17626.886 17451.606

JC+G(3) 17684.404 17316.526 17841.010 17624.766 17453.643
F81(5) 17681.538 17309.469 17825.300 17635.881 17465.204

F81+G(7) 17683.622 17311.508 17827.371 17633.907 17467.246
K80(9) 17474.072 17115.157 17656.029 17426.513 17217.537

K80+G(11) 17476.140 17117.190 17658.097 17423.166 17219.545
HKY(13) 17476.087 17110.295 17642.593 17435.653 17229.835

HKY+G(15) 17478.148 17112.325 17644.653 17432.468 17231.851
TrN(21) 17432.737 17059.981 17582.352 17391.896 17174.644

TrN+G(23) 17434.812 17062.010 17584.436 17389.632 17176.681
GTR(53) 16817.843 16520.270 17034.174 16907.388 16641.655

GTR+G(55) 16819.908 16522.285 17036.236 16905.011 16643.672
Model selected GTR GTR GTR GTR+G GTR
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Table 4.16: AIC values of GTR+Γ model test 3

model run 1 run 2 run 3 run 4 run 5
JC(1) 16682.116 16514.702 16702.632 16668.498 17040.233

JC+G(3) 16371.438 16193.319 16371.652 16346.523 16696.926
F81(5) 16690.981 16510.882 16707.304 16671.928 17058.894

F81+G(7) 16380.509 16187.451 16377.870 16348.538 16717.948
K80(9) 16495.662 16372.640 16548.909 16503.640 16844.615

K80+G(11) 16178.137 16044.080 16207.471 16173.254 16490.586
HKY(13) 16503.991 16368.937 16553.558 16507.322 16860.808

HKY+G(15) 16186.684 16039.050 16213.727 16175.899 16510.534
TrN(21) 16445.224 16336.897 16506.088 16454.258 16794.558

TrN+G(23) 16121.378 16004.067 16174.621 16129.803 16450.634
GTR(53) 16019.615 15914.206 16061.610 15960.335 16331.511

GTR+G(55) 15681.901 15560.559 15700.179 15620.379 15960.109

Model selected GTR+G GTR+G GTR+G GTR+G GTR+G

• For the HKY model, when the transition-to-transversion ratio was 2.0 and the

values for relative state frequencies were the same (0.23366, 0.26786, 0.29369,

and 0.20479), HKY was selected in 3 out of 5 test instances for sequences of

Table 4.17: AIC values of GTR+Γ model test 4

model run 1 run 2 run 3 run 4 run 5
JC(1) 11441.426 12592.245 12517.206 12204.339 11716.968

JC+G(3) 9951.129 10913.741 10867.033 10494.368 9974.928
F81(5) 11442.756 12597.116 12510.782 12201.795 11722.043

F81+G(7) 9950.976 10920.671 10861.069 10492.379 9989.805
K80(9) 11385.025 12521.564 12466.575 12142.684 11674.845

K80+G(11) 9884.831 10829.993 10804.839 10403.529 9911.281
HKY(13) 11386.452 12527.104 12460.108 12140.466 11675.037

HKY+G(15) 9885.689 10836.718 10798.811 10402.419 9927.859
TrN(21) 11370.055 12508.469 12452.269 12142.229 11621.400

TrN+G(23) 9875.806 10808.633 10782.134 10402.244 9892.902
GTR(53) 11214.222 12373.305 12271.197 12002.312 11519.300

GTR+G(55) 9694.806 10622.844 10559.997 10212.349 9761.921

Model selected GTR+G GTR+G GTR+G GTR+G GTR+G
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Table 4.18: AIC values of GTR+Γ model test 5

model run 1 run 2 run 3 run 4 run 5
JC(1) 15457.691 15497.331 16017.649 15309.959 15792.612

JC+G(3) 14783.766 14915.423 15368.558 14629.768 15206.930
F81(5) 15459.070 15502.334 16031.353 15316.512 15797.457

F81+G(7) 14783.046 14919.942 15383.299 14636.858 15212.745
K80(9) 15345.557 15383.954 15866.676 15176.852 15677.371

K80+G(11) 14661.326 14788.138 15212.892 14486.218 15081.618
HKY(13) 15347.237 15388.997 15880.260 15183.449 15683.216

HKY+G(15) 14662.118 14792.908 15227.713 14493.223 15087.649
TrN(21) 15301.557 15349.933 15843.497 15149.211 15665.182

TrN+G(23) 14619.207 14747.261 15194.169 14458.660 15066.402
GTR(53) 14949.957 14973.356 15493.305 14773.869 15326.244

GTR+G(55) 14231.609 14359.753 14809.274 14047.406 14701.597

Model selected GTR+G GTR+G GTR+G GTR+G GTR+G

length 1000 (see Table 4.8), but in 2 out of 5 test instances for sequences of

length 329 (see Table 4.7, Table 4.1 and Table 3.2).

• Model GTR was correctly identified in 4 out of 5 test instances for sequences of

either length (see Table 4.14 and Table 4.15). For the one test instance that did

not select GTR, the AIC value of GTR was closer to the AIC value of the se-

lected model for sequences of length 1000 (see values in Table 4.1 and Table 3.3).

These tests show that FINDMODEL results are more accurate when the sequences

are longer, a common finding in phylogenetic analysis [3, 27].

4.3 Results Regarding Γ Rate Heterogeneity

We used Γ rate heterogeneity in the testing for two models, HKY and GTR.

• For HKY, AIC values for models with Γ were much smaller than AIC values

for the corresponding homogeneous model versions; they differed by about 2%
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with 5 categories for the discrete Γ rate heterogeneity (see Table 4.11), by about

15% for Γ = 0.1 (see Table 4.12), and by about 5% for Γ = 0.5 (see Table 4.13).

AIC values were smaller than AIC values in test instances using the same set

of parameters but without Γ (see Table 4.9); they differed by about 6% for

HKY test5, by about 36% for HKY test6, and by about 12% for HKY test7.

• For GTR, AIC values for models with Γ were much smaller than AIC values

for the corresponding homogeneous model versions; they differed by about 2%

with 5 categories for the discrete Γ rate heterogeneity (see Table 4.16), by 16%

for Γ = 0.1 (see Table 4.17), and by 5% for Γ = 0.5 (see Table 4.18). AIC

values were smaller than those in test instances using the same parameters

without the Γ rate heterogeneity (see Table 4.15); they differed by about 6%

for GTR test3, by about 40% for GTR test4, and by about 9% for GTR test5.

The difference between AIC value for models with and without Γ is much larger for

Γ = 0.1 than for Γ = 0.5, as one would expect (recall that a smaller Γ means more

variation in rates). Thus FINDMODEL works correctly with Γ.
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Discussion

Many tools exist that can generate trees from sequence alignments, carry out phy-

logenetic analysis, generate likelihood values for edge parameters, and finally select

the best-fit model of nucleotide substitution. However, most of these steps benefit

from expert human intervention, something that nonspecialists in phylogenetic re-

construction may find intimidating. FINDMODEL runs on all platforms, provides

a user-friendly interface, and carries out all steps of the analysis automatically, with

well matched and statistically sound methods.

Our tests also show that FINDMODEL results are quite accurate, since it chose

the correct model (sometimes plus Γ) in 82% of the cases and since the AIC error rates

in the remaining cases are always below 0.12% (and mostly below 0.05%). Among

the 15 test instances in which the correct model was not chosen, 1 test instance chose

a model more specific than the correct model, while 14 test instances chose a more

general model.

FINDMODEL uses Weighbor to reconstruct a tree to feed to PAML. Other appli-

cations could be used, although both ML and Bayesian methods are currently unable

to handle datasets of substantial size, while MP methods (which have been scaled to
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20,000 sequences [35]) typically return large numbers of equally scoring trees, whose

use in model finding remains to be determined. Currently FINDMODEL is targeted

at datasets of less than 1,000 sequences, a range in which Weighbor usually works

well.

Finding the best evolutionary model is a computationally intensive procedure.

FINDMODEL is trivially parallelizable to a modest degree, since each separate model

can be evaluated independently. More significantly, a web server will always remain

bounded by the capacity of its hardware and the size of its customer base, so we

are planning to release a down-loadable code that will allow users to run as long as

desired on their own machines, using whichever phylogenetic packages they prefer.
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